
TexGaussian: Generating High-quality PBR Material via
Octree-based 3D Gaussian Splatting

Bojun Xiong1*†, Jialun Liu2*, Jiakui Hu3†, Chenming Wu2, Jinbo Wu2, Xing Liu2,
Chen Zhao2, Errui Ding2, Zhouhui Lian1‡

1Wangxuan Institute of Computer Technology, Peking University
2Baidu VIS

3Institute of Medical Technology, Peking University

TexGaussian

Albedo Roughness Metallic Rendering 1 Rendering 2

A wooden box
with gold accents

Astronomical 
telescope

A green jug with 
a handle and rope

Textual 
Descriptions Input Mesh

TexGaussian

TexGaussian

Rendering 3

Figure 1. Our proposed TexGaussian is capable of generating high-quality PBR material given the input 3D mesh based on the correspond-
ing textual descriptions. The generated results are naturally compatible with modern graphical engines for photo-realistic rendering under
different environment maps.

Abstract

Physically Based Rendering (PBR) materials play a cru-
cial role in modern graphics, enabling photorealistic ren-
dering across diverse environment maps. Developing an ef-
fective and efficient algorithm that is capable of automat-
ically generating high-quality PBR materials rather than
RGB texture for 3D meshes can significantly streamline
the 3D content creation. Most existing methods leverage
pre-trained 2D diffusion models for multi-view image syn-
thesis, which often leads to severe inconsistency between
the generated textures and input 3D meshes. This paper
presents TexGaussian, a novel method that uses octant-
aligned 3D Gaussian Splatting for rapid PBR material gen-
eration. Specifically, we place each 3D Gaussian on the
finest leaf node of the octree built from the input 3D mesh

*Denotes equal contribution.
†This work was partly done when Bojun Xiong and Jiakui Hu interned

in Baidu VIS.
‡Corresponding author. E-mail: lianzhouhui@pku.edu.cn

to render the multi-view images not only for the albedo
map but also for roughness and metallic. Moreover, our
model is trained in a regression manner instead of diffu-
sion denoising, capable of generating the PBR material
for a 3D mesh in a single feed-forward process. Exten-
sive experiments on publicly available benchmarks demon-
strate that our method synthesizes more visually pleasing
PBR materials and runs faster than previous methods in
both unconditional and text-conditional scenarios, which
exhibit better consistency with the given geometry. Our
code and trained models are available at https://3d-
aigc.github.io/TexGaussian.

1. Introduction
Traditional 3D asset creation relies heavily on the exper-
tise and extensive effort of professional designers [22], pos-
ing a significant barrier for casual users interested in creat-
ing 3D models independently. In the 3D design process,
geometry creation typically represents only a small por-

1

https://3d-aigc.github.io/TexGaussian
https://3d-aigc.github.io/TexGaussian


tion of the overall time, while the majority is dedicated to
developing textures and appearances, which are far more
time-consuming. Achieving a delicate appearance for a 3D
model often demands substantial time and effort from expe-
rienced designers.

Recently, Artificial Intelligence Generated Content
(AIGC) based on deep generative models, especially dif-
fusion models [16, 45] have been widely used to facilitate
the process of artistic creation, catalyzing advancements in
image generation [14, 36, 39, 41, 42] and video genera-
tion [2–4, 17, 51]. As a result, exploring effective ways
to leverage deep generative models to streamline the cre-
ation of detailed appearances for 3D models has become a
popular direction in the graphics and vision communities.

Recent advancements in 3D texture generation attempt to
use depth-conditional pre-trained 2D diffusion model [56]
to synthesize RGB images based on the depth maps ren-
dered from multiple views, such as TEXture [40] and
text2tex [7]. Subsequent works [5, 19, 55] further improve
multi-view consistency via blending the multi-view images
to a single and consistent texture map in every denoising
step. However, these methods struggle to have a global pic-
ture of 3D geometries due to the use of 2D diffusion models,
leading to inconsistencies between the texture map and the
semantics of the input 3D meshes. Moreover, the gener-
ated assets suffer from illumination-baked textures, which
can significantly degrade the quality of the final render-
ing when placed in novel lighting conditions [54]. While
DreamMat [58] supplements geometry and light control to
achieve material decomposition through score distillation
sampling [37], it still struggles to fully capture the global
geometry features. This limitation often results in the multi-
face Janus problem and leads to over-saturated colors.

On the other hand, training a 3D neural network di-
rectly on 3D data, such as Point-UV Diffusion [53] and
TexOct [25], is an effective way for 3D global consistency.
Meanwhile, this avoids multi-view sampling and score dis-
tillation sampling, which accelerates the process of texture
synthesis. However, relying on colored point clouds for 3D
representation and supervision often results in blurred out-
puts, primarily due to the sparse and non-compact nature
of point clouds in 3D space. Due to the limitations of the
adopted 3D representations and the lack of training data on
PBR materials, these approaches are incapable of generat-
ing high-fidelity PBR materials for 3D models.

To address the aforementioned challenges, this paper
presents TexGaussian, a fast and high-fidelity PBR mate-
rial generation model directly in 3D space that maintains
3D global consistency. Different from previous approaches
that primarily rely on diffusion models, our method works
in a regression manner to regress the PBR material from
the input mesh for faster generation speed. To enable ef-
fective learning in 3D space, we propose to use octree, a

specialized sparse voxel structure that efficiently organizes
and preserves 3D information, which can be built from 3D
point clouds sampled from the surface of the object. How-
ever, directly regressing the color of 3D point clouds on oc-
tree often results in blurry textures as mentioned in [25].
To tackle the challenges of the incompact and discrete na-
ture presented by points, we use 3D Gaussian Splatting
(3DGS) [21], a robust representation that bridges the gap
between 3D space and 2D raster images, allowing us to
fully utilize rich 2D image information to alleviate blur-
ring results. Specifically, for each input mesh, we sample
the dense 3D point clouds on its surface to build the corre-
sponding octree. On each octant (i.e., the finest leaf node
of octree), we place a 3D Gaussian [21] at its central posi-
tion. Then, we use the octree-based 3D U-Net [48] to pre-
dict the parameters of each 3D Gaussian on octants. Apart
from RGB colors, we extend each 3D Gaussian with addi-
tional parameters to represent the roughness and metallicity
of 3D objects. Multi-view images, including albedo, rough-
ness, and metallic maps, can be rasterized from all these
3D Gaussians via 3DGS. The 3D U-Net is supervised by
the difference between the predicted multi-view images and
their corresponding ground truth. Notably, the 3D U-Net is
trained to directly regress the multi-view images based on
the geometry feature of the input 3D model, which further
facilitates the process of 3D Gaussian prediction compared
to diffusion manner. We train our TexGaussian model on a
subset of Objaverse [12] with high-quality PBR materials,
enabling fast PBR material generation with a single feed-
forward pass. In summary, the contributions of our paper
are threefold:

• We propose an octant-aligned 3D Gaussian Splatting
method for high-quality PBR material synthesis on un-
textured input 3D mesh, which fully utilizes the supervi-
sion from 2D images, avoiding blurry results caused by
the discreteness of 3D point clouds.

• We adopt a regression manner to train our 3D U-Net
model instead of diffusion denoising, achieving faster
generative speed.

• We propose TexGaussian, a novel PBR material genera-
tion method based on the above two techniques. To our
knowledge, our method first generates PBR material di-
rectly in 3D space. Qualitative and quantitative experi-
ments have been conducted to verify the superiority of
the quality and efficiency of our method over other exist-
ing approaches.

2. Related Work

In this section, we mainly summarize current texture syn-
thesis methods, which can be roughly divided into three cat-
egories.

2



2.1. Multi-view Images Synthesis

Many previous works have tried to leverage the pow-
erful T2I model to assist texture generation for 3D
shapes. Specifically, they render the depth map of in-
put 3D mesh from multiple views and use depth condi-
tional T2I models [56] to synthesize RGB images and per-
form text-conditioned texture synthesis. TEXTure [40] and
Text2Tex [7] iteratively paint a mesh from different views.
However, images synthesized in early view could produce
errors that are not reconcilable with the geometry that is
observed in later views. Many subsequent works try to
alleviate multi-view inconsistency via different alignment
modules. TexFusion [5] proposes a sequential interlaced
multi-view sampler that interleaves texture assembling with
denoising steps in different camera views. Similarly, Tex-
Gen [19] directly enforces view consistent sampling in
RGB texture space and develops a noise resampling strategy
to retain rich texture details. TexPainter [55] blends images
from different views into a common color-space texture im-
age by weighted averaging to guarantee multi-view consis-
tency. GenesisTex [15] introducing style consistency and
dynamic alignment across multiple viewpoints. To remove
light influence from 2D diffusion models, Paint3D [54] con-
tribute separate UV Inpainting and UVHD diffusion mod-
els specialized in shape-aware refinement. Although these
methods achieve impressive texture results, they can still
hardly comprehend the overall geometry of input 3D mesh.

2.2. Optimization-based 3D Generation

Before the emergence of large-scale Text-to-Image genera-
tive model, earlier methods [9, 18, 29, 30, 32] propose to
optimize texture map of 3D object via natural language su-
pervised visual model, CLIP [38]. Subsequently, score dis-
tillation sampling (SDS) was adopted by DreamFusion [37]
and Magic3D [24]. The key idea is to optimize 3D represen-
tations such as NeRF [31] or InstantNGP [33] with the gra-
dient guidance from 2D diffusion priors [37, 50]. To gener-
ate PBR material, TextureDreamer [52] optimizes spatially-
varying bidirectional reflectance distribution (BRDF) field
through personalized geometric-aware score distillation.
Fantasia3D [8] uses a single predefined environmental.
However, the generated images from diffusion models may
not be consistent with the given environment light. Dream-
Mat [58] proposes a novel geometry and light-aware dif-
fusion model, which is trained to generate images that are
consistent with the given environment light. FlashTex[13]
also proposes a light-conditioned diffusion model within a
two-stage pipeline, combining reconstruction and SDS opti-
mization to enhance texture quality and achieve better light
disentanglement. However, these methods struggle with the
Janus problem due to the semantically ambiguous. And the
time consumption is relatively too long to use in practice.

2.3. Generating Texture from 3D Data

The most straightforward way to synthesize texture map for
3D mesh is to train generative model directly from 3D data
with texture groud truth [6, 10–12]. Early methods such as
Texture Fields [34] learn implicit texture fields to assign a
color to each pixel on the surface of the 3D shape. Textu-
rify [44] devices face convolution operation on mesh sur-
face to predict texture on each face. It employs differen-
tiable rendering with an adversarial loss to ensure that gen-
erated textures produce realistic imagery. Recently, some
diffusion-based texture synthesis methods, such as Point-
UV [53] and TexOct [25] train a denoising network on col-
ors of point clouds which are further mapped to 2D UV
map. Although these methods achieve better 3D global con-
sistency with input mesh, they are only trained on several
categories of small datasets [6]. What’s more, discrete su-
pervision from 3D point clouds leads to suboptimal results
compared with continuous signals such as 2D images.

3. Method

In this section, we provide a detailed explanation of our pro-
posed method, TexGaussian. The overall pipeline of our
method is shown in Fig 2. Existing texture synthesis ap-
proaches mainly rely on pre-trained 2D diffusion models,
which struggle to fully understand the overall 3D structure.
This often leads to misalignment between the generated tex-
ture map and 3D semantics. Our goal is to synthesize high-
quality PBR materials for a given mesh directly in 3D space.

3.1. Overview

To enable effective learning in 3D space, we use octree, a
sparse voxel structure, to organize and store 3D informa-
tion without compromising representation quality due to
the inherent sparseness of 3D objects in 3D space. Thus,
we sample a large number of points on the surface of the
given mesh to construct the corresponding octree. The key
components of our method are the octant-aligned Gaussian
Splatting and the octree-based 3D U-Net. Specifically, we
place a 3D Gaussian at the center of each octree’s finest leaf
node. The octree-based 3D-Unet is trained to predict the
parameters of each 3D Gaussian. Under this circumstance,
the generated octant-aligned 3D Gaussians are naturally on
the mesh surface. We render them from multiple viewpoints
using 3D Gaussian Splatting and train the 3D U-Net by min-
imizing the difference in 2D raster images and 3D Gaussian
parameters. During inference, the rendered multi-view im-
ages are baked into the UV space of input mesh using dif-
ferentiable mesh rendering, producing the final texture and
material map. The details of 3D Gaussian Splatting (3DGS)
are provided in the supplementary material.

3



Roughness
Metallic

Albedo

Multi-view

Rendering

Multi-view images

Octant-aligned

3D Gaussian

3D Octree

Gaussian

Splatting

Rendered images

Octree-based

3D U-Net3D Octree

𝐿3𝐷

Gaussian

Fitting

𝐿2𝐷

Roughness
Metallic

Albedo

“a wooden and 
metal shield”

𝑂 𝑆𝑥 𝑆𝑦 𝑆𝑧 𝑅𝑟 𝑅𝑖 𝑅𝑗 𝑅𝑘 𝑅 𝐺 𝐵 𝑀 𝑅

Opacity Scale Rotation Albedo Material

B
ak

in
g

(a) Octant-aligned 3D Gaussian Splatting (b) Octree-based 3D U-Net Training (c) Texture & Material Baking

3D Object

Figure 2. An overview of our PBR material generation framework. (a) We propose octant-aligned 3D Gaussian Splatting, which positions
a 3D Gaussian at the center of each finest leaf node of the constructed octree. Additional channels are added at the end of the Gaussian
parameters to model PBR material. (b) We use the 3D U-Net built upon octree-based convolutional networks to predict the Gaussian
parameters. Our octree-based 3D U-Net is trained by minimizing the difference on 2D raster images and 3D Gaussian parameters. (c) We
bake the multi-view rendered images to the UV space of the input 3D model to realize physically based rendering under new illumination
environments.

3.2. Octant-aligned 3D Gaussian Splatting
For a given mesh, we first sample N = 100, 000 3D points
on its surface. The corresponding octree is then built by
adaptively subdividing the voxels containing those points
until the maximum depth is reached. As a result, all of the
finest leaf nodes of octree lie along the boundary of the 3D
object, which is consistent with the characteristic of the op-
timized 3D Gaussian. Therefore, we align a 3D Gaussian
at the central position of each finest leaf node to effectively
model the appearance without compromising the splatting
quality. It is worth noting that we do not adjust the position
of 3D Gaussians because they are already on the surface of
3D shape and adding additional offset relative to the octant
center would not improve the rendering quality through our
early experiments. To model PBR material that includes
roughness and metallic information, we follow [20, 43] to
append two additional channels at the end of 3D Gaussian
parameters which are responsible for roughness and metal-
lic map rendering, respectively.

For each 3D object in our dataset, we render multi-view
images of albedo, roughness, and metallic maps for the
training of 3D Gaussian. The multi-view rendering results
of the albedo map are view-independent. So we just use
three RGB channels to take the place of the original spher-
ical harmonics. As noted, we exclude the position from 3D
Gaussian parameters in our model. Thus, our 3D Gaussian
parameters consist of 13 channels in total: one for opacity,
three for scale, four for rotation, three for albedo, one for
roughness, and one for metallic. To stabilize training, we
choose to employ different activation functions compared
to the original Gaussian Splatting [21]. Specifically, We
multiply the softplus-activated scales si with 0.01, ensuring
that the initial 3D Gaussians conform to the object’s counter
of object at the beginning of training rather than expanding
outward.

We pre-fitting the parameters of 3D Gaussians on the

constructed octree for each 3D object in our dataset via the
original loss function in [21] on multi-view RGB images,
roughness maps, and metallic maps:

L = (1− λ)L1 + λLD-SSIM, (1)

where λ = 0.2.

3.3. Octree-based 3D U-Net Training
To handle the encoding of our octant-aligned 3D Gaussian
representation, we use the 3D U-Net built upon octree-
based convolutional neural networks [48] to predict the
Gaussian parameters. Inspired by LGM [46], the output
feature of the 3D U-Net on each octant is treated as the
3D Gaussian parameters, which contain 13 channels, as dis-
cussed in the last subsection.

To effectively train our 3D U-Net, we adopt the regres-
sive loss objective, which could further facilitate the gener-
ation process. The input to our octree-based 3D U-Net is
the geometry feature on each octree’s finest leaf node, such
as normal and local displacement. For text-conditioned
PBR material synthesis, the text feature is extracted by pre-
trained CLIP model [38] and is fed to U-Net via the octree-
based multi-head cross attention mechanism similar to [47].
The predicted 3D Gaussians are rasterized from multiple
views via Gaussian Splatting [21]. At each training step,
we rasterize the RGB images, alpha images, roughness and
metallic maps from randomly selected eight views. Follow-
ing [46], we apply mean square error (MSE) loss and VGG-
based LPIPS loss [57] to the RGB image, roughness map,
and metallic map:

LRGB = LMSE(IRGB, I
GT
RGB) + LLPIPS(IRGB, I

GT
RGB), (2)

LR = LMSE(IR, I
GT
R ) + LLPIPS(IR, I

GT
R ), (3)

LM = LMSE(IM, IGT
M ) + LLPIPS(IM, IGT

M ), (4)

4



where ‘R’ and ‘M’ denote roughness and metallic, respec-
tively. We further apply the MSE loss on the alpha image
for faster convergence of the shape:

Lα = LMSE(Iα, I
GT
α ). (5)

To accelerate the coverage process, we also apply the
3D MSE loss L3D, which calculates the difference between
predicted parameters of 3D Gaussians and pre-fitting ones.
Finally, the complete loss function of our model is defined
as the sum of all the above losses:

Ltotal = LRGB + LR + LM + Lα + L3D. (6)

3.4. Texture and Material Baking
In the inference stage, we also first build the correspond-
ing octree for the input 3D mesh. Then, we use our trained
octree-based 3D U-Net to generate 3D Gaussian on every
octant and rasterize them from multiple views. The ultimate
output of our method should be a global texture map and
material map. Thus, we rasterize the input mesh using the
differentiable renderer [23] and optimize its albedo, rough-
ness and metallic parameters via the MSE loss between the
Nvdiffrast [23] rendering results and 3D Gaussian render-
ing results. With adequately optimized implementation, this
process takes only about several seconds to bake the multi-
view images to untextured 3D model. After the optimiza-
tion, our input mesh paired with its albedo and material map
is capable of performing physically based rendering in new
illumination environments.

4. Experiments
4.1. Implementation Details
Dataset We train our TexGaussian model on two
publicly-available datasets: ShapeNet [6] and Obja-
verse [12]. For 3D objects in the ShapeNet dataset, since
they only contain albedo maps without PBR materials,
our model is trained to generate RGB textures only. We
train our model on four categories of ShapNet: bench,
car, chair and table which is consistent with previ-
ous works [25, 53]. We curate a subset of Objaverse mod-
els encoded with PBR materials and convert those using
the specular-glossiness workflow to the metallic-roughness
workflow to achieve a consistent PBR representation. This
process resulted in a total of 29, 200 models. For each 3D
object, we render its RGBA image, roughness map, and
metallic map from 64 views of 5122 for training.

Network Architecture Our 3D U-Net is built upon
octree-based convolutional neural networks [48] which only
operates on non-empty octree leaf nodes. The depth of our
constructed octree is set to 8 (resolution 2562). Our 3D U-
Net consists of 5 down-sampling and up-sampling blocks.

Figure 3. Unconditional RGB texture generative results on
ShapeNet. Please zoom in for a better inspection of color details.

For the text-conditioned generation, cross-attention layers
are only inserted at the last two down-sampling blocks, the
middle block, and the first two up-sampling blocks. The
input channel of our 3D U-Net is set to 4, where 3 for nor-
mal vector and 1 for local displacement while the output
channel is set to 13 as mentioned above. The resolution of
3D Gaussian Splatting is set to 5122. The resolution of the
baked albedo and material map is set to 10242.

Training Details We train our model in a single-category
and unconditional manner on ShapeNet, i.e., there are 4
TexGaussian models without text conditions in total. This
per-category model is trained on 4 NVIDIA A100 (40G)
GPUs for about 2 days and is set up for a fair comparison
with other existing methods trained on ShapeNet. For the
Objaverse dataset, we train a text-conditioned TexGaussian
model for PBR material generation on 24 NVIDIA A100
(40G) GPUs for two weeks. For each batch, we randomly
sample 8 camera views to calculate loss functions. We
adopt the AdamW [26] optimizer with a learning rate of
4 × 10−4, a weight decay of 0.05, and betas of (0.9,0.95).
The learning rate is cosine annealed to 0 during the training
and we clip the gradient with a maximum norm of 1.0.

Evaluation metrics To effectively assess the quality of
our generative results, we adopt the metric proposed
by [59]. Specifically, each mesh with the generated PBR
material is rendered from 20 uniformly distributed views
to get multi-view albedo maps, and PBR rendering results
in a new illumination environment. These images are used
to calculate the FID [35] and KID [1] scores against those
from ground truth to evaluate the quality and diversity of
generative PBR materials. For the ShapeNet dataset, we
only use albedo maps. The final score is averaged across
20 views, and a lower FID and KID score indicates better
generation quality and diversity.

4.2. Unconditional RGB Texture Generation
We conduct unconditional RGB texture instead of PBR ma-
terial generation on four categories of the ShapeNet dataset.
We use the same train and test data split as in [25, 53]. Fig. 3

5



Table 1. Quantitative comparison of the FID and KID (×102) score as well as the inference time of TexGaussian and other methods on
ShapeNet dataset [6]. The top part reports the comparison with methods that also train per-category models on ShapeNet. The bottom part
reports the comparison with 2D diffusion-based methods, which select 50 samples from the test set of each category.

Methods Average Bench Car Chair Table TimeFID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓
Point-UV (1-Stage) [53] 88.43 5.78 64.96 1.44 186.10 17.57 46.23 1.93 56.42 2.19 39.92s
Point-UV (2-Stage) [53] 61.49 2.67 67.48 1.61 89.38 5.82 41.33 1.53 47.75 1.72 49.75s
TexOct [25] 59.45 2.60 60.46 0.97 90.10 6.11 37.70 1.36 49.52 1.97 17.44s
Ours 49.76 2.07 46.37 0.44 80.20 5.22 29.96 1.09 42.52 1.54 11.02s

TEXTure [40] 169.82 7.94 152.53 5.28 236.58 18.52 119.71 2.86 170.46 5.11 132.21s
Text2Tex [7] 156.62 6.68 154.95 5.79 188.60 15.06 125.34 3.11 157.57 2.77 1005.58s
Paint3D [54] 135.25 4.67 104.16 1.68 204.22 13.06 104.64 2.24 127.98 1.71 231.56s
Ours 100.97 1.88 86.37 0.75 117.53 5.20 94.89 0.57 105.09 0.95 11.12s

shows the unconditionally generated RGB texture by our
single-category model with high quality, fidelity, and diver-
sity. It can be seen that the texture map synthesized by our
method is of great 3D global consistency with the corre-
sponding input geometry.

Quantitative Comparison We conduct quantitative anal-
ysis and comparison on our model and other state-of-the-art
methods. Specifically, we compare our model with Point-
UV Diffusion [53] and TexOct [25] which also train single-
category models on ShapeNet. We also compare with some
methods using pre-trained 2D diffusion prior for multi-
view images synthesis such as TEXTure [53], Text2Tex [7]
Paint3D [54], and TexPainter [55] whose input text prompts
are set to “a *” and ‘*’ is the name of corresponding cate-
gory. Due to the relatively long time consumption, we only
use 50 3D objects selected from the test set to evaluate the
methods based on 2D diffusion models. We conduct only a
qualitative comparison for TexPainter [55] for its lengthy
processing time. Table 1 reports the comparison of FID
and KID scores as well as average inference time on a sin-
gle NVIDIA A100 (40G) GPU. It is worth noting that our
model only takes about one second to predict the parame-
ters of each 3D Gaussian and the rest of the time is used for
texture baking. From Table 1, we have the following ob-
servation. First, our method obtains the best performance
in terms of FID and KID. For example, our method outper-
forms TexOct [25], by an average of 9.69 in FID and 0.53
in KID. These improvements indicate that our method ex-
cels at generating high-quality textures. Second, TexGaus-
sian achieves the fastest generative speed in all categories,
which is much less time-consuming than other methods.

Qualitative Comparison Fig. 4 provides some qualita-
tive results on the same input 3D meshes by different meth-
ods. Point-UV [53] and TexOct [25] use colored point

Point-UV

TexOct

Ours

Text2Tex

TEXTure

Paint3D

TexPainter

Figure 4. Examples of generated RGB texture obtained by Tex-
Gaussian and other state-of-the-art models on the same 3D object.
Please zoom in for a better inspection.

clouds as supervision to train diffusion models. As a con-
sequence, the generated texture map is relatively blurry due
to the discreteness of the point cloud. For other methods

6



a wooden barrel encapsulated
 by metal bands

Fantasia3D FlashTex DreamMat Ours

Input Rendering Albedo Metallic/
RoughnessRendering Albedo Metallic/

RoughnessRendering Albedo Metallic/
RoughnessRendering Albedo Metallic/

Roughness

a red pistol with
 black accents.

Green grenade keychain with 
a key attached.

a wooden chest.

Figure 5. Qualitative comparison with Fantasia3D [8], FlashTex [13] and DreamMat [58]. We provide the rendered image, albedo map,
roughness map, and metallic map for each 3D object.

that leverage pre-trained 2D diffusion prior, they can hardly
comprehend the total geometry. The generated texture maps
by them are not consistent with the semantics of input 3D
mesh, such as the chaotic stripes on the bench and chair
in Fig. 4. On the contrary, our method generates smooth
and colorful RGB textures on unseen objects, which align
well with 3D meshes.

4.3. Text-conditioned PBR Material Generation
We train the text-conditioned PBR material generation
model on our filtered subset of Objaverse [12]. We use
the text descriptions of 3D objects from Cap3D [27, 28] to
train our model. We choose 29, 000 3D objects in our fil-
tered subset for training and the rest 200 for testing. Fig 1
shows some generative results by proposed TexGaussian on
the test set. We can see that our model comprehends the
overall geometry feature of input 3D mesh. It is capable of
synthesizing high-quality albedo, roughness, and metallic,
which are aligned well with 3D semantics such as accents
with high metallic on the wooden box and rope with high
roughness on the jug.

Quantitative Comparison We conduct quantitative com-
parison with three state-of-the-art text-conditioned PBR
material synthesis methods: Fantasia3D [8], FlashTex [13],
and DreamMat [58] on our test set. Table 2 reports FID
and KID scores on both multi-view albedo map and PBR
rendering images under the same illumination environ-
ment. TexGaussian outperforms all the baseline methods
in achieving the best visual quality of the generated appear-
ances. We also report the average inference time of differ-
ent methods on a single NVIDIA A100 (40G) GPU across

Table 2. Quantitative comparison of the FID and KID (×102)
scores as well as the inference time of TexGaussian and other
methods on our test set which consists of 200 3D objects with
ground truth PBR materials.

Methods
Albedo PBR rendering

Time
FID↓ KID↓ FID↓ KID↓

Fantasia3D [8] 213.21 0.96 209.87 0.48 22.7mins
FlashTex [13] 185.24 1.13 186.82 0.42 20.3mins
DreamMat [58] 152.63 1.09 145.49 0.19 48.2mins
Ours 123.72 0.20 129.52 0.02 21.04s

our test set. Due to the iterative optimization of score dis-
tillation sampling, all other three methods cost at least 20
minutes for the generation. In contrast, our TexGaussian
only takes about 20 seconds, in which one second is for
predicting the Gaussian parameters and the rest is for bak-
ing, which results in 60× faster compared to previous ap-
proaches.

Qualitative Comparison Fig 5 visualizes the generated
albedo, roughness, and metallic of each compared method
from the same text prompt and untextured meshes. We also
show the PBR rendering images of the generated materials
under the same environment light. It can be observed that
Fantasia3D [8] and FlashTex [13] generate irregular colors
on mesh surfaces, which lead to rendering results with low
quality. DreamMat [58] is capable of generating a visu-
ally pleasing appearance for test 3D models. However, it
can hardly align the generated PBR material well with the
3D semantics, such as the black band on the wooden bar-
rel. What’s more, it tends to generate over-saturated col-
ors, which is demonstrated in the wooden chest and green

7



Table 3. Quantitative comparison of methods using different types
of 3D Gaussian Fitting.

Method PSNR ↑LPIPS ↓SSIM ↑3D Gaussian Number

Full voxel aligned 23.75 0.17 0.92 16,777,216 (2563)
Octant-aligned 32.60 0.039 0.97 79,480

grenade. In addition, all of the compared methods struggle
to completely disentangle the light and texture, which re-
sults in relatively chaotic results of generated metallic and
roughness. On the contrary, our method is directly trained
from 3D origin data. It is capable of generating clean and
smooth PBR material while fully comprehending the over-
all 3D structure. We provide more generative results in the
supplementary material.

4.4. Ablation Study
For the purpose of analyzing the impact of different designs
in our model, we conduct ablation studies by removing or
changing some proposed modules.

Essentials of Octree We first analyze the effectiveness
of using Octree in our pipeline. To do this, we calculate
the quantitative quality of 3D Gaussian pre-fitting by our
octant-aligned and full voxel-aligned 3D Gaussian Splatting
on the subset of Objaverse dataset [12]. The depth of octree
in this ablation is set to 8, and the resolution of full voxels
is 2563, which is consistent with the finest resolution of oc-
tree to guarantee comparison fairness. Table 3 reports the
PSNR, LPIPS [57], and SSIM [49] metrics on the albedo
map as well as the average number of 3D Gaussians of oc-
tant and full voxel aligned 3D Gaussian Splatting across
our Objaverse subset. Fig. 6 also presents some visual re-
sults of our Gaussian fitting. These results demonstrate that
the proposed octant-aligned 3D Gaussian produces a much
more reasonably compact and precise representation of di-
verse and complex 3D assets with much fewer 3D Gaus-
sians compared to the full voxel version.

Essentials of different losses We verify the importance
of different losses we proposed to train our model. We term
all the losses calculated on 2D image space as L2D:

L2D = LRGB + LR + LM + Lα. (7)

We train two additional TexGaussian models using only
the L2D or L3D loss on ShapeNet car category due to
its large variations and complexity of texture to validate
their effectiveness. It is worth noting that in this dataset,
L2D = LRGB + Lα due to the lack of material informa-
tion. The training curves of MSE loss and LPIPS loss be-
tween rendering images and ground-truth ones are shown

Ground truth

Octant-aligned

Voxel-aligned

Figure 6. Visualization of different manners of Gaussian fitting.
The rendering results demonstrate excellent reconstruction perfor-
mance of the proposed octant-aligned 3D Gaussian Splatting.

10

MSE Loss LPIPS Loss

Training Batches (1k)Training Batches (1k)

Full Model

Without 𝐿3𝐷
Without 𝐿2𝐷

Full Model

Without 𝐿3𝐷
Without 𝐿2𝐷

0 20 30 40 50
0.005

0.010

0.015

0.020

0.025

0.030

0.06

0.08

0.10

0.12

0.14

0.16

100 20 30 40 50

Figure 7. The training loss curves of our model with different
losses.

w/o 𝐿𝐿2𝐷𝐷

Full Model

Figure 8. Results of our model trained with and without L2D . The
green rectangles highlight the shortcomings of TexGaussian model
trained without L2D .

in Fig 7, which demonstrate the effects of L2D and L3D.
From the loss curves, we can conclude that L3D facilitates
the process of convergence and L2D enhances the quality
of synthesized images, as evidenced by the large margin of
improvement in the LPIPS loss when introducing L2D. We
also provide some qualitative results to verify the effective-
ness of L2D on the test set of car category in Fig 8. Only
using L3D results in a relatively blurry texture map due to
the discreteness of 3D Gaussian which is similar to the char-
acteristic of 3D point clouds analyzed above.

5. Conclusion
In this paper, we proposed TexGaussian, an octree-based
3D Gaussian Splatting model for high-quality PBR mate-
rial generation on untextured meshes. We aligned each 3D

8



Gaussian on the octant of the corresponding octree built
from the input untextured object and extended the param-
eters of 3D Gaussian with additional channels to represent
the roughness and metallic map. We trained our model with
regression objectives, achieving faster inference speed com-
pared to previous texture synthesis methods. Experimental
results demonstrated that our method is capable of gener-
ating high-quality PBR materials that are readily usable in
modern graphics engines for photo-realistic rendering, of-
fering enhanced realism for a variety of applications.

Limitations The generalization of TexGaussian is still
hindered by the scale of the training set. Thus it struggles to
generate various textures for some extremely complex 3D
objects beyond our training data. We are looking forward to
training our TexGaussian model with more parameters and
more data on a larger-scale GPU cluster in the future.

References
[1] Mikołaj Bińkowski, Dougal J. Sutherland, Michael Arbel,

and Arthur Gretton. Demystifying MMD GANs. In Interna-
tional Conference on Learning Representations, 2018. 5

[2] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel
Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi,
Zion English, Vikram Voleti, Adam Letts, et al. Stable video
diffusion: Scaling latent video diffusion models to large
datasets. arXiv preprint arXiv:2311.15127, 2023. 2

[3] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dock-
horn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis.
Align your latents: High-resolution video synthesis with la-
tent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
22563–22575, 2023.

[4] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue,
Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luh-
man, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya
Ramesh. Video generation models as world simulators.
2024. 2

[5] Tianshi Cao, Karsten Kreis, Sanja Fidler, Nicholas Sharp,
and KangXue Yin. Texfusion: Synthesizing 3d textures
with text-guided image diffusion models. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), 2023. 2, 3

[6] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015. 3, 5, 6

[7] Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey
Tulyakov, and Matthias Nießner. Text2tex: Text-driven
texture synthesis via diffusion models. arXiv preprint
arXiv:2303.11396, 2023. 2, 3, 6

[8] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fan-
tasia3d: Disentangling geometry and appearance for high-
quality text-to-3d content creation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 22246–22256, 2023. 3, 7

[9] Yongwei Chen, Rui Chen, Jiabao Lei, Yabin Zhang, and Kui
Jia. Tango: Text-driven photorealistic and robust 3d styliza-
tion via lighting decomposition. Advances in Neural Infor-
mation Processing Systems, 35:30923–30936, 2022. 3

[10] Jasmine Collins, Shubham Goel, Kenan Deng, Achlesh-
war Luthra, Leon Xu, Erhan Gundogdu, Xi Zhang, Tomas
F Yago Vicente, Thomas Dideriksen, Himanshu Arora, et al.
Abo: Dataset and benchmarks for real-world 3d object un-
derstanding. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 21126–
21136, 2022. 3

[11] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong
Ngo, Oscar Michel, Aditya Kusupati, Alan Fan, Chris-
tian Laforte, Vikram Voleti, Samir Yitzhak Gadre, Eli
VanderBilt, Aniruddha Kembhavi, Carl Vondrick, Georgia
Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi.
Objaverse-xl: A universe of 10m+ 3d objects. arXiv preprint
arXiv:2307.05663, 2023.

[12] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana
Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse:
A universe of annotated 3d objects. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13142–13153, 2023. 2, 3, 5, 7, 8

[13] Kangle Deng, Timothy Omernick, Alexander Weiss, Deva
Ramanan, Jun-Yan Zhu, Tinghui Zhou, and Maneesh
Agrawala. Flashtex: Fast relightable mesh texturing with
lightcontrolnet. In European Conference on Computer Vi-
sion (ECCV), 2024. 3, 7

[14] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in neural informa-
tion processing systems, 34:8780–8794, 2021. 2

[15] Chenjian Gao, Boyan Jiang, Xinghui Li, Yingpeng Zhang,
and Qian Yu. Genesistex: Adapting image denoising diffu-
sion to texture space. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4620–4629, 2024. 3

[16] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. 2020. 2

[17] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet. Video dif-
fusion models. Advances in Neural Information Processing
Systems, 35:8633–8646, 2022. 2

[18] Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang
Cai, Lei Yang, and Ziwei Liu. Avatarclip: Zero-shot text-
driven generation and animation of 3d avatars. arXiv preprint
arXiv:2205.08535, 2022. 3

[19] Dong Huo, Zixin Guo, Xinxin Zuo, Zhihao Shi, Juwei Lu,
Peng Dai, Songcen Xu, Li Cheng, and Yee-Hong Yang. Tex-
gen: Text-guided 3d texture generation with multi-view sam-
pling and resampling. ECCV, 2024. 2, 3

[20] Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xi-
aoxiao Long, Wenping Wang, and Yuexin Ma. Gaussian-

9



shader: 3d gaussian splatting with shading functions for re-
flective surfaces. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
5322–5332, 2024. 4

[21] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 2, 4

[22] Matthias Labschütz, Katharina Krösl, Mariebeth Aquino,
Florian Grashäftl, and Stephanie Kohl. Content creation for
a 3d game with maya and unity 3d. Institute of Computer
Graphics and Algorithms, Vienna University of Technology,
6(124):2, 2011. 1

[23] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,
Jaakko Lehtinen, and Timo Aila. Modular primitives for
high-performance differentiable rendering. ACM Transac-
tions on Graphics, 39(6), 2020. 5

[24] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,
Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler,
Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution
text-to-3d content creation. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2023. 3

[25] Jialun Liu, Chenming Wu, Xinqi Liu, Xing Liu, Jinbo Wu,
Haotian Peng, Chen Zhao, Haocheng Feng, Jingtuo Liu, and
Errui Ding. Texoct: Generating textures of 3d models with
octree-based diffusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4284–4293, 2024. 2, 3, 5, 6

[26] I Loshchilov. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017. 5

[27] Tiange Luo, Chris Rockwell, Honglak Lee, and Justin John-
son. Scalable 3d captioning with pretrained models. arXiv
preprint arXiv:2306.07279, 2023. 7

[28] Tiange Luo, Justin Johnson, and Honglak Lee. View selec-
tion for 3d captioning via diffusion ranking. arXiv preprint
arXiv:2404.07984, 2024. 7

[29] Yiwei Ma, Xiaoqing Zhang, Xiaoshuai Sun, Jiayi Ji, Haowei
Wang, Guannan Jiang, Weilin Zhuang, and Rongrong Ji.
X-mesh: Towards fast and accurate text-driven 3d styliza-
tion via dynamic textual guidance. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 2749–2760, 2023. 3

[30] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and
Rana Hanocka. Text2mesh: Text-driven neural stylization
for meshes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13492–
13502, 2022. 3

[31] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 3

[32] Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky,
and Tiberiu Popa. Clip-mesh: Generating textured meshes
from text using pretrained image-text models. In SIGGRAPH
Asia 2022 conference papers, pages 1–8, 2022. 3

[33] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-

olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, 2022. 3

[34] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo
Strauss, and Andreas Geiger. Texture fields: Learning tex-
ture representations in function space. In Proceedings IEEE
International Conf. on Computer Vision (ICCV), 2019. 3

[35] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On
aliased resizing and surprising subtleties in gan evaluation.
In CVPR, 2022. 5

[36] Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. SDXL: Improving latent diffusion models
for high-resolution image synthesis. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. 2

[37] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv
preprint arXiv:2209.14988, 2022. 2, 3

[38] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 3, 4

[39] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with clip latents. arXiv preprint arXiv:2204.06125, 1
(2):3, 2022. 2

[40] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes,
and Daniel Cohen-Or. Texture: Text-guided texturing of 3d
shapes. In ACM SIGGRAPH 2023 conference proceedings,
pages 1–11, 2023. 2, 3, 6

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models, 2021. 2

[42] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022. 2

[43] Yahao Shi, Yanmin Wu, Chenming Wu, Xing Liu, Chen
Zhao, Haocheng Feng, Jingtuo Liu, Liangjun Zhang, Jian
Zhang, Bin Zhou, et al. Gir: 3d gaussian inverse ren-
dering for relightable scene factorization. arXiv preprint
arXiv:2312.05133, 2023. 4

[44] Yawar Siddiqui, Justus Thies, Fangchang Ma, Qi Shan,
Matthias Nießner, and Angela Dai. Texturify: Generating
textures on 3d shape surfaces. In Computer Vision - ECCV
2022 - 17th European Conference, Tel Aviv, Israel, October
23-27, 2022, Proceedings, Part III, pages 72–88. Springer,
2022. 3

[45] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International confer-
ence on machine learning, pages 2256–2265. PMLR, 2015.
2

[46] Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang,
Gang Zeng, and Ziwei Liu. Lgm: Large multi-view gaussian

10



model for high-resolution 3d content creation. arXiv preprint
arXiv:2402.05054, 2024. 4

[47] Peng-Shuai Wang. Octformer: Octree-based transformers
for 3D point clouds. ACM Transactions on Graphics (SIG-
GRAPH), 42(4), 2023. 4

[48] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,
and Xin Tong. O-CNN: Octree-based convolutional neu-
ral networksfor 3D shape analysis. ACM Transactions on
Graphics (SIGGRAPH), 36(4), 2017. 2, 4, 5

[49] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 8

[50] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan
Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and
diverse text-to-3d generation with variational score distilla-
tion. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. 3

[51] Jinbo Xing, Hanyuan Liu, Menghan Xia, Yong Zhang,
Xintao Wang, Ying Shan, and Tien-Tsin Wong. Toon-
crafter: Generative cartoon interpolation. arXiv preprint
arXiv:2405.17933, 2024. 2

[52] Yu-Ying Yeh, Jia-Bin Huang, Changil Kim, Lei Xiao, Thu
Nguyen-Phuoc, Numair Khan, Cheng Zhang, Manmohan
Chandraker, Carl S Marshall, Zhao Dong, et al. Texture-
dreamer: Image-guided texture synthesis through geometry-
aware diffusion. arXiv preprint arXiv:2401.09416, 2024. 3

[53] Xin Yu, Peng Dai, Wenbo Li, Lan Ma, Zhengzhe Liu, and
Xiaojuan Qi. Texture generation on 3d meshes with point-
uv diffusion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4206–4216, 2023. 2,
3, 5, 6

[54] Xianfang Zeng, Xin Chen, Zhongqi Qi, Wen Liu, Zibo Zhao,
Zhibin Wang, Bin Fu, Yong Liu, and Gang Yu. Paint3d:
Paint anything 3d with lighting-less texture diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4252–4262, 2024. 2,
3, 6

[55] Hongkun Zhang, Zherong Pan, Congyi Zhang, Lifeng Zhu,
and Xifeng Gao. Texpainter: Generative mesh texturing with
multi-view consistency. In ACM SIGGRAPH 2024 Confer-
ence Papers, pages 1–11, 2024. 2, 3, 6

[56] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models, 2023.
2, 3

[57] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 4, 8

[58] Yuqing Zhang, Yuan Liu, Zhiyu Xie, Lei Yang, Zhongyuan
Liu, Mengzhou Yang, Runze Zhang, Qilong Kou, Cheng Lin,
Wenping Wang, and Xiaogang Jin. Dreammat: High-quality
pbr material generation with geometry- and light-aware dif-
fusion models. ACM Trans. Graph., 43(4), 2024. 2, 3, 7

[59] Xin-Yang Zheng, Hao Pan, Peng-Shuai Wang, Xin Tong,
Yang Liu, and Heung-Yeung Shum. Locally attentional sdf

diffusion for controllable 3d shape generation. ACM Trans-
actions on Graphics (SIGGRAPH), 42(4), 2023. 5

11



A. Preliminary of 3D Gaussian Splatting
Gaussian splatting employs a collection of 3D Gaussians to repre-
sent 3D data. Specifically, each Gaussian is formally defined as:

G(x) = e−
1
2
(x−µ)TΣ−1(x−µ), (8)

where µ ∈ R3 represents the spatial mean of 3D Gaussian and
Σ ∈ R3×3 denotes the covariance matrix. The covariance matrix
Σ of a 3D Gaussian is analogous to describing the configuration
of an ellipsoid. Thus, the covariance matrix Σ is decomposed into
a scaling matrix S and a rotation matrix R as follows:

Σ = RSS⊤R⊤, (9)

To allow independent optimization of both factors, they are stored
separately: a 3D vector s for scaling and a quaternion q to rep-
resent rotation. During the rendering process, the 3D Gaussians
are projected onto a 2D plane. With the intrinsic matrix K and
extrinsic matrix T , the 2D mean µ′ and covariance Σ′ are defined
as follows:

µ′ = K[µ, 1]⊤, Σ′ = JTΣT⊤J⊤, (10)

Here, J represents the Jacobian of the affine approximation of the
projective transformation. Each 3D Gaussian is associated with
an opacity value o and a view-dependent color c, determined by
a set of spherical harmonics coefficients. In our model, the multi-
view rendered images of albedo map do not depend on the selected
viewpoints. As a result, we just use three-channels RGB on each
3D Gaussian to represent the view-independent colors instead of
original spherical harmonics, and we exclude the positional pa-
rameter µ because each 3D Gaussian is fixed at the center of each
finest leaf node of the constructed octree. All the parameters can
be collectively denoted by Θ0 with:

Θ0i = {oi, si, qi, ci}, (11)

representing the parameters for the i-th Gaussian.
Moreover, to encode the PBR material parameters, we append

additional two parameters: roughness r and metallic m at the end
of the original Gaussian parameters. To render multi-view images
of these two attributes, we concatenate r and m with previous
parameters to obtain:

Θ1i = {oi, si, qi, ri}, Θ2i = {oi, si, qi,mi}. (12)

Then, all the 3D Gaussians are paired with these two new parame-
ters Θ1i and Θ2i, rendered from multiple viewpoints to get multi-
view roughness map and metallic map for further training.

B. Network Details
Unconditional RGB Texture Generation The network ar-
chitecture of the octree-based 3D U-Net we used in unconditional
RGB texture generation is shown in Fig 9. The U-Net has five hi-
erarchical levels, corresponding to octree depths of 8, 7, 6, 5 and 4,
with resolutions of 2563, 1283, 643, 323, 163. The feature dimen-
sions are set to 32, 64, 128, 256, 256 respectively. The channel
of input and output feature is 4 and 13 as described in the main
manuscript.

Octree-based ConvolutionOctree Upsample

Octree Downsample

Gaussian Parameters

Geometry Features

Figure 9. The network architecture of the octree-based 3D U-Net
we used to train our unconditional RGB texture generation model.

Conv Resblock & Attention Graph Resblock

Conv Downsample/Upsample

Graph Downsample/Upsample

Noised/Pred Split

Noised/Pred Latent

Octree-based ConvolutionOctree Upsample

Octree Downsample

Gaussian Parameters

Geometry Features Octree-based Cross Attention

Text Feature

Figure 10. The network architecture of the octree-based 3D U-
Net we used to train our text-conditioned PBR material generation
model.

Text-conditioned PBR Material Generation The net-
work architecture of the octree-based 3D U-Net we used in text-
conditioned PBR material generation is shown in Fig 10. The U-
Net has five hierarchical levels, corresponding to octree depths of
8, 7, 6, 5 and 4, with resolutions of 2563, 1283, 643, 323, 163. The
feature dimensions are set to 64, 128, 256, 512, 512 respectively.
The text feature is fed to U-Net via the octree-based multi-head
cross attention mechanism. The cross attention layers are only in-
serted at the least two down-sampling blocks, the middle block
and the two first up-sampling blocks to save GPU memory.

C. More Results
Our method is capable of generating diverse materials given dif-
ferent text prompts for a single mesh. Fig 11 shows the PBR ma-
terials and the rendering results of the same mesh generated from
different text prompts by our proposed TexGaussian. These results
demonstrate that our method is able to generate diverse materials
of different styles that align well with the text prompts and 3D
objects with high fidelity.

We provide more generated results in Fig 12.

12



Albedo Roughness Metallic Rendering1 Rendering2

A blue denim barrel

Albedo Roughness Metallic Rendering1 Rendering2

A red barrel

Albedo Roughness Metallic Rendering1 Rendering2

A steel barrel

Albedo Roughness Metallic Rendering1 Rendering2

A wooden barrel

Albedo Roughness Metallic Rendering1 Rendering2

A blue and silver box with white accents

A green box with yellow accents

A red box with gold accents

A wooden box with yellow accents

Albedo Roughness Metallic Rendering1 Rendering2

Albedo Roughness Metallic Rendering1 Rendering2

Albedo Roughness Metallic Rendering1 Rendering2

Figure 11. Diverse material generation. Our method can generate different materials with different text prompts on the same mesh.

13



Input

A colorful hourglass 
clock with gemstones

Albedo Map Roughness Map Metallic Map

A gun with 
an black handle

A red and gold ornate cube 
with horns

Environment Map

a wooden barrel-shaped mug 
with a handle.

A square-shaped metal gate 
with yellow stripes

A magnifying glass 
with a wooden handle.

PBR Rendering Results

Figure 12. More generative results of our method on different input 3D models and text prompts.

14


	Introduction
	Related Work
	Multi-view Images Synthesis
	Optimization-based 3D Generation
	Generating Texture from 3D Data

	Method
	Overview
	Octant-aligned 3D Gaussian Splatting
	Octree-based 3D U-Net Training
	Texture and Material Baking

	Experiments
	Implementation Details
	Unconditional RGB Texture Generation
	Text-conditioned PBR Material Generation
	Ablation Study

	Conclusion
	Preliminary of 3D Gaussian Splatting
	Network Details
	More Results

