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Abstract

Wide-baseline panoramic images are frequently used in
applications like VR and simulations to minimize captur-
ing labor costs and storage needs. However, synthesizing
novel views from these panoramic images in real time re-
mains a significant challenge, especially due to panoramic
imagery’s high resolution and inherent distortions. Al-
though existing 3D Gaussian splatting (3DGS) methods can
produce photo-realistic views under narrow baselines, they
often overfit the training views when dealing with wide-
baseline panoramic images due to the difficulty in learn-
ing precise geometry from sparse 360◦ views. This pa-
per presents Splatter-360, a novel end-to-end generaliz-
able 3DGS framework designed to handle wide-baseline
panoramic images. Unlike previous approaches, Splatter-
360 performs multi-view matching directly in the spherical
domain by constructing a spherical cost volume through a
spherical sweep algorithm, enhancing the network’s depth
perception and geometry estimation. Additionally, we intro-
duce a 3D-aware bi-projection encoder to mitigate the dis-
tortions inherent in panoramic images and integrate cross-
view attention to improve feature interactions across multi-
ple viewpoints. This enables robust 3D-aware feature rep-
resentations and real-time rendering capabilities. Experi-
mental results on the HM3D [27] and Replica [32] demon-
strate that Splatter-360 significantly outperforms state-of-
the-art NeRF and 3DGS methods (e.g., PanoGRF, MVSplat,
DepthSplat, and HiSplat) in both synthesis quality and gen-
eralization performance for wide-baseline panoramic im-
ages. The source code will be released.
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1. Introduction
In recent years, 360-degree cameras and VR/AR head-
sets have gained widespread popularity, enabling seamless
scene capture and delivering immersive experiences by pre-
senting visuals directly to users. However, due to the labor-
intensive nature of data acquisition and the high storage
cost, panoramic images in industry settings often exhibit
wide baselines. Generating novel views from these wide-
baseline panoramas is essential to provide users full free-
dom of movement within virtual environments.

The emergence of neural radiance fields (NeRF) has
demonstrated impressive performance in synthesizing novel
views from perspective images. However, NeRF typically
requires dense images captured from various angles and
positions to address the well-known shape-radiance am-
biguity. To reduce the need for dense input, generaliz-
able NeRF appears [36, 41, 49]. Building on the success
of these approaches, previous work such as PanoGRF [8]
aims to mitigate overfitting in spherical radiance fields by
leveraging 360-degree scene priors. Despite their strengths,
NeRF-based methods rely on implicit representations, and
the rendering process demands extensive network eval-
uations. Consequently, these methods require powerful
GPUs, making them unsuitable for real-time applications
on lightweight mobile devices like VR headsets, where low-
power processing is essential. In contrast to NeRF, 3D
Gaussian Splatting (3DGS) [17] moves away from implicit
representation, instead adopting an explicit ellipsoid primi-
tive representation. This representation is particularly well-
suited for real-time rendering on traditional rasterization-
based devices. However, like NeRF, 3DGS faces challenges
with overfitting training views, especially when handling
wide-baseline panoramic images.

This paper addresses the challenges of learning from
wide-baseline panoramic images for real-time novel view
rendering of 3DGS. Unlike previous generalizable 3DGS
methods such as [4, 5, 19], our approach, dubbed as
Splatter-360, operates end-to-end with panoramic image in-
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puts and outputs. The design of our method is motivated
by the following key factors:1) Panoramic images provide
a full 360◦ field-of-view (FoV), whereas cubemap perspec-
tive images split the scene into six independent views, caus-
ing the issue of projecting points behind the camera in the
source view when sampling point in the planar cost vol-
ume of the reference view — an issue that panoramic im-
ages naturally circumvent; 2) Our method eliminates the
explicit back-and-forth conversion between panoramic and
cube map representations, where backward conversions of-
ten introduce seam artifacts during stitching [2].

The end-to-end approach for generalizable 3D Gaussian
Splatting (3DGS) presents two major challenges. First,
panoramic images have significantly higher resolution than
perspective images, requiring an extremely efficient net-
work to avoid excessive memory consumption. To ad-
dress this, we propose performing multi-view matching di-
rectly in the spherical domain by constructing a spherical
cost volume through a spherical sweep algorithm. Sec-
ond, the uneven distortion inherent in panoramic images
complicates accurate depth estimation. We introduce a
3D-aware bi-projection encoding that leverages monocular
depth, equirectangular projection, and cube-map branch in-
formation to tackle this issue. Additionally, by incorporat-
ing a cross-view attention mechanism to enhance feature
interaction across different viewpoints, we obtain a robust
3D-aware feature representation.

Our contributions can be summarized as follows:
• We propose Splatter-360, a generalizable 3D Gaussian

Splatting method for wide-baseline panoramic images,
which is an end-to-end trainable network that can gener-
ate 3DGS primitives for novel panoramic view synthesis
and enables real-time rendering experience.

• We introduce a spherical cost volume based on a spheri-
cal sweep algorithm in the feed-forward Gaussian splat-
ting framework, which improves the geometry estimation
capabilities of the network.

• Extensive experiments conducted on the HM3D [27] and
Replica [32] datasets demonstrate that our Splatter-360
significantly outperforms state-of-the-art methods in han-
dling wide-baseline panoramic images, both in terms of
synthesis quality and generalization performance.

2. Related Work

2.1. Generalizable Novel View Synthesis

Recent advancements in novel view synthesis have been
largely driven by NeRF and 3D Gaussian Splatting (3DGS).
These methods can be broadly classified into two cate-
gories: per-scene optimization approaches [9, 37, 43] and
generalizable models [4, 5, 10, 33, 45, 49]. Generaliz-
able methods [4, 5, 10, 33, 45, 49] enable rapid reconstruc-
tion by learning priors from large-scale datasets, allowing

for efficient feedforward inference. Below, we provide an
overview of generalizable NeRF and 3DGS techniques:

Generalizable NeRF: Early attempts in generalizable
NeRF models aim to reconstruct objects and scenes by gen-
erating pixel-aligned features for radiance field prediction,
pioneered by [36, 41, 49]. Subsequent work such as Neu-
Ray [24] predicts the visibility of 3D points relative to in-
put images, focusing more on visible features. [10] and
[40] further propose a multi-view transformer encoder with
epipolar line sampling to capture multi-view geometric pri-
ors efficiently. MuRF [45] uses a target view frustum vol-
ume aligned with the target image plane to enable sharp,
high-quality rendering. More recently, LRM [13] and In-
stant3D [20] designed a large transformer model to regress
triplane NeRF feature for single- or sparse-view reconstruc-
tion.

Generalizable 3DGS: To address NeRF’s high compu-
tational demands, generalizable 3DGS has emerged to sim-
plify view synthesis through rasterization-based splatting,
bypassing the need for expensive volume sampling. Meth-
ods like Splatter Image [34] demonstrate efficient object-
level reconstruction by learning Gaussian parameters from
single views. In contrast, pixelSplat [4] and Flash3D [33]
have pushed this technique to scene-level reconstruction.
More recently, [52] extends the paradigm of LRM [13]
to scene-level with 3DGS, MVSplat [5] introduces a cost
volume representation using plane sweeping to boost per-
formance further. HiSplat [35] proposes a hierarchical
structure for generalizable 3DGS. DepthSplat [46] lever-
ages depth estimation to address multi-view depth methods’
limitations and failure cases. However, most of these meth-
ods are designed for perspective images and struggle with
panoramic inputs due to the large field of view and wide
baselines. In response, we propose Splatter-360, extending
the strengths of 3DGS to panoramic images.

2.2. Panoramic View Synthesis and Generation

Unlike perspective, novel view synthesis, panoramic novel
view synthesis introduces unique challenges due to the
distortions caused by equirectangular projection. Early
works [1, 12] attempted to synthesize panoramic views us-
ing multi-sphere images. More recent approaches have
focused on reconstructing radiance fields or 3D Gaussian
scenes from dense panoramic inputs [2, 11]. The chal-
lenge intensifies with sparse 360◦ inputs, as depth estima-
tion becomes significantly more difficult. A few methods
seek to address this by leveraging the predicted depth and
geometric warping to construct neural radiance fields for
panoramic novel view synthesis [3, 18]. 360Roam [15] pro-
poses to adapt neural rendering methods for panoramic in-
puts, struggling in wide-baseline scenarios. PERF [39], on
the other hand, explores an inpainting-based approach to
generate neural radiance fields from a single panoramic im-
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age. Most relevant to our work is PanoGRF [8], which in-
troduces Generalizable Spherical Radiance Fields for wide-
baseline panoramas. PanoGRF achieves state-of-the-art
performance by directly aggregating geometry and appear-
ance features of 3D sample points from each panoramic
view. However, its inference and rendering speed are lim-
ited, making it unsuitable for real-time applications. In con-
trast, our work proposes a generalizable panoramic view
synthesis pipeline designed to generate 3D Gaussian prim-
itives, carefully considering network design and inherent
real-time performance during rendering.

In contrast to the generalizable setting, several works
have explored text-based panoramic view generation, al-
beit with distinct objectives. Nonetheless, these approaches
often share similar network design philosophies. For ex-
ample, Text2Light [7] focuses on high dynamic range
panorama generation, while FastScene [26] employs coarse
view synthesis followed by progressive inpainting-based
generation. DiffPano [48] introduces a spherical epipolar-
aware diffusion model for panorama synthesis. Addi-
tionally, Panfusion [51], Dreamscene360 [53], and Scene-
Dreamer360 [21] propose novel architectures built on 2D
diffusion models. Although these works are orthogonal to
ours, they share several challenges in handling panoramic
view synthesis.

Concurrent work. While preparing our work, we found
several concurrent works address similar challenges using
diffusion priors. For instance, ViewCrafter [50], Gaussia-
nEnhancer [23], ReconX [22], and FreeVS [42] all use
video diffusion models to improve the novel view synthe-
sis. However, these works require computationally inten-
sive de-noising and are not designed for panoramic view
synthesis. A very recent work, MVSplat-360 [6], focuses
on synthesizing novel perspective images that enable arbi-
trary position and viewpoint exploration (i.e., 360◦ naviga-
tion) using video diffusion priors, aligning with the goals
of aforementioned methods but in generalizable 3DGS set-
ting. In contrast, our work specifically tackles generating
novel views for panoramic images (i.e., 360◦ images).

3. Proposed Method

Our proposed framework, Splatter-360, is designed to syn-
thesize novel views from wide-baseline 360° panoramic im-
ages by leveraging the strengths of 3DGS. Unlike conven-
tional 3DGS methods [5, 46], which are trained on perspec-
tive images, Splatter-360 operates directly on panoramic
images, thereby mitigating the information loss associated
with perspective transformation. The overall pipeline is de-
picted in Fig. 1. A detailed explanation of the 3D-aware bi-
projection encoding is provided in Sec. 3.1, spherical depth
estimation is discussed in Sec. 3.2, and the pixel-aligned
Gaussian decoding is outlined in Sec. 3.3. Additionally,

preliminary on 3DGS is included in the supplementary ma-
terial to ensure this paper is self-contained.

3.1. 3D-Aware Bi-Projection Encoding
Although equirectangular projection (ERP) provides a wide
field of view and seamless image continuity, the significant
distortions, especially near the poles, hinder the network’s
ability to learn meaningful features effectively. To address
this, we propose a bi-projection encoder that leverages both
the advantages of ERP and the complementary strengths of
cube-map projection (CP). By extracting auxiliary features
through CP, our approach enhances the network’s capacity
to handle these distortions better.

The overall structure of the bi-projection encoder is il-
lustrated on the left side of Fig. 1. In each branch of the
bi-projection network, we begin by applying the convolu-
tional neural network from Unimatch [44] to independently
extract local features from both the ERP and CP represen-
tations. Unlike prior panorama feature extraction meth-
ods [16, 38], which primarily focus on 2D features, our net-
work is designed to learn 3D-aware features. To achieve
this, we employ a cross-view attention mechanism to fa-
cilitate feature interactions between different viewpoints in
the ERP and across the various views in the CP. We ob-
tained FERP and FCP after the cross-view attention mod-
ule. FCP is then stitched up into ERP feature FC2E .

For wide-baseline panoramas, naive 360◦ multi-view
matching methods are hard to handle occlusions and tex-
tureless areas. To enhance the 3D-aware capability of the
encoder in reasoning about geometric details, we introduce
the CP single-view depth encoder. This is accomplished
by incorporating the single-view geometric priors from a
pre-trained monocular depth network into the CP branch at
the feature level. Specifically, we extract monocular depth
features from each perspective view using a pre-trained
depth estimation network DepthAnythingV2 [47]. Once
the monocular depth feature maps Fmono

CP for all perspec-
tive views are obtained, we stitch these CP features into the
ERP view, denoted as Fmono

C2E . Next, we concatenate Fmono
C2E

with the transformed CP feature FC2E , and use a two-layer
MLP to get the final CP branch feature:

F ′
C2E = F1([F

mono
C2E ,FC2E ]), (1)

where [., .] denotes the concatenation operation and F1 is a
two-layer MLP. Then, we propose a fusion module, F2, to
fuse the CP branch feature F ′

C2E and ERP branch feature
FERP . The final output feature of our encoder is repre-
sented as:

F = F2(F
′
C2E ,FERP ), (2)

where F2 is the proposed fusion module, which con-
sists of convolutional layers augmented with squeeze-and-
excitation blocks [14, 16].
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Figure 1. Our Splatter-360 processes 360° panoramic images using a bi-projection encoder that extracts features from both equirectangular
projection (ERP) and cube-map projection (CP) through multi-view transformers. These features are used for spherical cost volume
construction, and multi-view matching is performed between the reference and source views in spherical space. Next, a refinement U-Net
is applied to enhance the spherical cost volume, yielding refined cost volumes and more accurate spherical depth estimations. These refined
outputs are then fed into the Gaussian decoder, which produces pixel-aligned Gaussian primitives for synthesizing novel views.

3.2. Spherical Depth Estimation
After obtaining a robust feature representation for
panoramic images, the next step is cost volume construc-
tion. One straightforward approach is to convert the
panorama into cube-map-like perspective images and then
follow the perspective-based methods such as MVSplat [5]
and DepthSplat [46] to construct cost volume. However,
such a method has an unavoidable shortcoming: for each
3D sampling point in the planar cost volume of the refer-
ence view, these points may project behind the camera in
the source view (i.e., z-depth < 0). When this occurs, incor-
rect local image features from the source view are sampled,
leading to inaccurate local similarity computations and, ul-
timately, erroneous depth estimates. This issue is a conse-
quence of the narrow field-of-view plane sweep algorithm
traditionally used for the perspective-based method.

To address this, we leverage the 360-degree field of view
inherent to panoramas and apply the spherical projection
formula derived from [48] to construct a spherical cost vol-
ume. More concretely, the spherical sweep algorithm sam-
ples depth candidates within the spherical domain, comput-
ing feature correlations across multiple views to construct
the cost volume. For each reference view, we sample D
depth candidates in the spherical space, where the depth val-
ues rm ∈ [rnear, rfar] are sampled in the logarithmic space
between the near range rnear and the far range rfar.

To transform the equirectangular coordinates to spherical
coordinates, we use the following equations:θ = (0.5− u

W
) · 2π

ϕ = (0.5− v

H
) · π,

(3)

where u and v represent the pixel coordinates in the

equirectangular grid, while θ and ϕ denote the longitude and
latitude, respectively. Additionally, W and H refer to the
width and height of the ERP feature maps on which multi-
view matching is performed.

Next, we transform the spherical polar coordinates
(r, θ, ϕ) into Cartesian coordinates (x, y, z) to obtain the
camera coordinates pi

camera
xcam = r cos(ϕ) · sin(θ)
ycam = r sin(ϕ)

zcam = r cos(ϕ) · cos(θ),
(4)

To obtain the pixel coordinates (u, v) at the source view
j, we back-project the camera coordinates using the rela-
tive camera pose W i→j between the reference view and the
source view:

pj
camera = W i→jpi

camera

With known corresponding pixel coordinates, we sample
the local image feature F j→i from the source view feature
and compute the feature similarity between F j→i and F i as
follows:

Ci
rm =

F i · F j→i
rm√

C
∈ RH×W , m = 1, 2, · · · , D, (5)

where C denotes the total feature channel and Ci
rm denotes

the feature similarity between F j→i and F i at the mth

depth candidate. Then, we can concatenate each depth can-
didates’ feature similarity to get the spherical cost volume.

Ci = [Ci
r1 ,C

i
r2 , · · · ,C

i
rD ] ∈ RH×W×D. (6)

As the initial spherical cost volume only considers the pixel-
level similarity and is hard to handle occlusions and texture-
less areas. We further use a U-Net [5] to refine it. Specif-
ically, the proposed U-Net mainly learns a residual volume
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value ∆Ci, which can be added to the initial spherical cost
volume to get the final one:

C̃
i
= Ci +∆Ci ∈ RH×W×D. (7)

Finally, we can use the softmax operation to get the final
spherical depth estimation:

Di = softmax(C̃
i
)G ∈ RH×W , (8)

where G = [r1, r2, . . . , rD] ∈ RD is the predefined
depth candidates and softmax denotes the softmax func-
tion which can transform spherical cost volume to the prob-
ability distribution for each depth candidates.

3.3. Pixel-Aligned Gaussian in Equirect-Coordinate
Once the 3D-aware feature representation and spherical cost
volume are obtained, we proceed to predict pixel-aligned
Gaussians on the equirectangular coordinate grid. Specifi-
cally, for each pixel, we estimate Gaussian centers, quater-
nions, spherical harmonics (SH), and scaling factors, re-
spectively.

Gaussian centers µ. We use the estimated spherical depth
D to calculate the gaussian centers. Specifically, for each
pixel, we first compute the camera cartesian coordinates
pcamera of the gaussian center using its spherical depth D
via Eq. 3 and Eq. 4. Next, the world coordinates of the
Gaussian center are calculated as pworld = Wpcamera, where
W represents the camera-to-world transformation matrix.

Opacity α. The opacity is calculated according to the
matching confidence. Specifically, we first use the proba-
bility distribution of spherical cost volume(i.e., the softmax
output of Eq. 8) to get the matching confidence. Then, we
feed the matching confidence along with the image features
into a two-layer convolutional network to predict the opac-
ity.

Covariance Σ and SH c. We predict these parameters us-
ing two convolutional layers, which take as input the con-
catenation of image features, the refined cost volume, and
the original ERP images. The covariance matrix Σ is com-
puted as:

Σ = R(θ)⊤ diag(s)R(θ),

following the formulation in [4]. Here, R(θ) is the rotation
matrix parameterized by quaternions, s represents the scal-
ing matrix, and c is the spherical harmonics for direction-
dependent color encoding.

4. Experiments
4.1. Implementation Details
We implement our proposed method using PyTorch and
conduct all experiments on a cluster of NVIDIA V100
GPUs, each equipped with 32GB of VRAM. Splatter-360

is trained with a loss function that is a linear combination
of mean squared error (MSE) and LPIPS loss, with weights
set to 1.0 and 0.05, respectively. More details about the im-
plementation are presented in the supplementary material.

4.2. Datasets, Baselines, and Metrics
Datasets. We evaluate Splatter-360 on two large-scale
panoramic datasets: HM3D [27] and Replica [32]. These
datasets contain diverse indoor scenes captured with 360°
panoramic cameras, providing a challenging benchmark for
wide-baseline novel view synthesis.

Baselines. To proveide a fair comparisions both quantita-
tively and qualitatively, we compare our Splatter-360 with
several state-of-the-art generalizable 360-degree method
PanoGRF [8] and generalizable perspective methods in-
cluding HiSplat [35], DepthSplat [46] and MVSplat [5].

Metrics. We evaluate the performance of Splatter-360 us-
ing standard metrics for novel view synthesis, including
PSNR, SSIM, and LPIPS.

4.3. Quantitative Results
Our results demonstrate that Splatter-360 outperforms ex-
isting methods in both synthesis quality and generalization
to novel views. As for the perspective-based method, we
convert panoramas to cube maps (12 perspective images)
and input these cube maps into HiSplat, DepthSplat, and
MVSplat. We did not compare with PixelSplat [4] due to
out-of-memory errors during inference with 12 perspective
image views. Furthermore, HiSplat and DepthSplat cannot
be trained on the HM3D dataset with 12 perspective images
due to GPU memory constraints; therefore, we tested their
official pre-trained models on Re10K [54] for evaluation on
both HM3D and Replica. MVSplat and Splatter-360 are
trained on HM3D using 8 Tesla V100 GPUs.

Table 1 shows that existing perspective-based methods,
including HiSplat, DepthSplat, and MVSplat, struggle with
generalization to cube-map inputs and cannot be directly
applied to panoramic datasets. We tested the fine-tuned
version of MVSplat, but it still lags behind Splatter-360
in terms of generalization, both on HM3D and Replica.
Specifically, the PSNR of MVSplat is 1.114 dB lower than
Splatter-360 on HM3D and 1.489 dB lower on Replica. We
also compared it with PanoGRF [8], specifically designed
for panoramic inputs. Splatter-360 consistently outper-
forms PanoGRF across all metrics on Replica and HM3D.
On HM3D, the PSNR of Splatter-360 is 2.662 dB higher
than PanoGRF, and on Replica, it is 1.968 dB higher.

Moreover, Table 2 provides a quantitative compari-
son of novel-view depth estimation between MVSplat and
Splatter-360. Splatter-360 consistently outperforms MVS-
plat across all depth metrics on HM3D and Replica, verify-
ing that the proposed method can better capture geometry
for panoramic inputs.
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Figure 2. Qualitative comparison between our Splatter-360 and PanoGRF, MVSplat on the Replica dataset. Regions with notable differ-
ences are highlighted using red and blue rectangles. Please zoom in for a clearer view.
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Figure 3. Qualitative comparison between our Splatter-360 and PanoGRF, MVSplat on the HM3D dataset. Regions with notable differences
are highlighted using red and blue rectangles. Please zoom in for a clearer view.

4.4. Qualitative Results

Qualitative comparisons are provided in Fig. 3 and Fig. 2,
with key differences highlighted using red and blue rectan-
gles. As shown in the first sample of Fig. 2, Splatter-360
produces much sharper edges and more accurate textures,
particularly on objects like the table and chair. In the sec-
ond and third samples, PanoGRF demonstrates less defined

edges, particularly on the floor, while MVSplat exhibits no-
ticeable artifacts in the form of floaters near the white wall.

A comparison of learned geometry between Splatter-360
and MVSplat is presented in Fig. 4. MVSplat shows signifi-
cantly poorer depth estimation, as evidenced by its incorrect
reconstruction of surfaces such as the lamp and table. In
contrast, Splatter-360 delivers more accurate and detailed
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Figure 4. Novel view depth comparison between Splatter-360 and PanoGRF on the Replica dataset. “Pano.” denotes panoramic view and
“Perspec.” denotes perspective view.

depth predictions with clearer geometry and well-defined
surfaces.

4.5. Ablation Study
We validate the effectiveness of different modules proposed
in Splatter-360 in this section. Due to the large number
of ablation studies and limited resources, we utilized 2
NVIDIA Tesla V100 GPUs for each group of experiments
in this section.

Spherical cost volume. Eliminating the spherical cost vol-
ume leads to a notable decline in performance across all
metrics, highlighting its crucial role in the model’s abil-
ity to generate high-quality reconstructions. Specifically,
as shown in the first row of Table 3 , compared to the full
model, the PSNR drops by 5.271 dB and 2.263 dB on the
Replica and HM3D datasets, respectively.

ERP encoder vs. CP encoder. We separately removed
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Table 1. Quantitative comparison with baseline methods on the HM3D and Replica datasets. † indicates models that were trained by us on
the panoramic dataset, whereas for all other methods, we used the pre-trained models provided by the original authors.

HM3D [27] Replica [32]

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
HiSplat [35] 17.268 0.624 0.488 17.157 0.642 0.417
MVSplat [5] 17.574 0.636 0.441 18.005 0.631 0.512
DepthSplat [46] 20.224 0.695 0.383 19.369 0.732 0.334

PanoGRF [8] 25.631 0.813 0.268 27.920 0.892 0.171
MVSplat† [5] 27.179 0.851 0.176 28.399 0.908 0.115
Splatter-360† 28.293 0.875 0.155 29.888 0.924 0.097

Table 2. Estimated depth comparison between MVSplat and
Splatter-360 on the Replica and HM3D datasets.

Dataset Metric MVSplat Splatter-360

Replica [32]

Abs Diff↓ 0.132 0.102
Abs Rel↓ 0.088 0.063
RMSE↓ 0.247 0.197
δ < 1.25↑ 89.913 94.572

HM3D [27]

Abs Diff↓ 0.130 0.106
Abs Rel↓ 0.094 0.076
RMSE↓ 0.271 0.223
δ < 1.25↑ 90.469 93.851

the ERP and CP encoders to evaluate their contributions.
The results of these ablations are presented in the third and
fourth rows of Table 3. The ERP encoder is crucial for
maintaining high PSNR and SSIM values and achieving low
LPIPS values, highlighting its vital role in panoramic fea-
ture extraction and encoding. In contrast, the removal of the
CP encoder results in a smaller performance drop compared
to the removal of the ERP encoder. However, removing the
CP encoder on the Replica dataset still leads to a PSNR de-
crease of approximately 0.448 dB, suggesting that the CP
encoder provides auxiliary support in the Gaussian recon-
struction of panoramic images.

Cross-view attention. Corss-view attention is essential to
extract the 3D-awareness feature. Here, we test the influ-
ence of removing this module. As shown in the second row
of Table 3 , such a removing resulted in a noticeable de-
cline in PSNR and SSIM, alongside an increase in LPIPS,
indicating the effectiveness of cross-view attention.

Monocular depth network feature. Removing the monoc-
ular depth encoder led to a PSNR drop of 0.467 dB in the
Replica dataset. This suggests that the pre-trained monoc-
ular depth features offer a robust single-view geometry-
aware prior, which is especially advantageous for recon-
structing 360-degree sparse views in textureless indoor

Table 3. Ablation studies were conducted on the HM3D and
Replica datasets. For simplicity, we use the following abbrevia-
tions: ‘SCV’ for spherical cost volume and ‘CVA’ for cross-view
attention.

Ablated Replica [32] HM3D [27]

module PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

× SCV 23.850 0.818 0.210 25.224 0.802 0.223
× CVA 28.217 0.905 0.124 26.918 0.851 0.182
× ERP 26.985 0.887 0.142 25.905 0.827 0.202
× CP 28.673 0.909 0.117 27.277 0.857 0.174
× Mono Feat. 28.654 0.911 0.116 27.380 0.858 0.173

Full 29.121 0.914 0.111 27.487 0.860 0.171

scenes.

5. Conclusion
This paper introduced Splatter-360, a novel framework for
generalizable 3D Gaussian Splatting designed for wide-
baseline panoramic images. By leveraging 3D-Aware Bi-
Projection Encoding and spherical cost volume, our method
significantly improves the quality of novel view synthesis
and geometry estimation from panoramic inputs. Experi-
mental results on the HM3D and Replica datasets demon-
strate that Splatter-360 sets a new state-of-the-art perfor-
mance in the panoramic setting, making it a promising solu-
tion for applications in VR, simulation rendering, and 360°
video streaming.

Limitations and future work. Our method achieves state-
of-the-art performance on several benchmarks but shares
some limitations with existing approaches. It requires pose
input, lacks generative capabilities, and is currently limited
to indoor scenes due to the absence of a large-scale 360◦

outdoor dataset. In the future, we plan to create a compre-
hensive synthetic outdoor dataset and enhance our method
with a video diffusion model. More importantly, we aim

8



to explore pose-free 360◦ reconstruction in diverse outdoor
environments.
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Supplementary Material

6. Additional Quantitative Results
6.1. Comparisons with More Input Views
Table 4 presents a quantitative comparison of MVSplat and
Splatter-360 using three-view inputs. Splatter-360 demon-
strates superior performance to MVSplat in SSIM and
LPIPS, while exhibiting comparable PSNR values. Addi-
tionally, we evaluate the estimated novel view depth us-
ing depth metrics used in [30]. Splatter-360 significantly
outperforms MVSplat across all the used depth metrics.
Our Splatter-360 exhibits robust general performance with
three-view inputs, despite being trained on two-view inputs.

6.2. Comparisons under a Narrow-baseline
Table 5 presents a quantitative comparison between MVS-
plat and Splatter-360 under the narrow-baseline setting. In
the main text, we sample an input pair with a frame in-
terval of 100. Here, the frame interval of the input pair
is further reduced to 50. Splatter-360 consistently outper-
forms MVSplat across all metrics. This result indicates
that Splatter-360 exhibits superior performance under the
narrow-baseline condition.

6.3. Additional Ablation Studies
We conduct additional ablation studies on the cost volume
refinement U-Net and the depth refinement U-Net. Table 6

Table 4. Quantitative comparison with three context views be-
tween MVSplat and Splatter-360 on the Replica and HM3D
datasets.

Dataset Metric MVSplat Splatter-360

Replica [32]

PSNR↑ 29.121 29.109
SSIM↑ 0.908 0.913
LPIPS↓ 0.123 0.116

Abs Diff↓ 0.125 0.103
Abs Rel↓ 0.078 0.060
RMSE↓ 0.233 0.193
δ < 1.25↑ 90.771 94.367

HM3D [27]

PSNR↑ 27.858 27.905
SSIM↑ 0.861 0.868
LPIPS↓ 0.174 0.168

Abs Diff↓ 0.118 0.095
Abs Rel↓ 0.083 0.067
RMSE↓ 0.251 0.209
δ < 1.25↑ 91.684 94.545

presents the statistical results obtained after removing these
modules individually. In comparison to the complete model
using all components, the model without depth refinement
U-Net exhibits significantly degraded PSNR performance.
Specifically, PSNR decreased by approximately 0.7 dB on
Replica and by about 0.69 dB on HM3D. Upon remov-
ing the cost volume refinement U-Net, PSNR decreased by
0.119 dB on Replica and by 0.125 dB on HM3D.

7. More Implementation Details
7.1. Dataset Details
The datasets are built based on Replica [32] and HM3D [27]
textured mesh dataset. In particular, we sample camera
trajectories to render videos with AI-Habitat simulation
tool [29]. Since AI-habitat only provides the API for cap-
turing perspective views, we first get cube maps for each
viewpoint and stitch them into panoramas.

For HM3D [27], we split the train and test set following
their original split. HM3D contains 800 training scenes and
100 test scenes. We sample 5 camera trajectories for each
scene. In total, we finally rendered 4000 training scenes and
500 test scenes.

For Replica, we use all the scenes for testing. Replica has
18 scenes in total, and we sample 5 camera trajectories for
each scene. In total, we render 90 test scenes. We randomly
sample 3 target views between the context image pair for

Table 5. Quantitative comparison under a narrow baseline between
MVSplat and Splatter-360 on the Replica and HM3D datasets.

Dataset Metric MVSplat Splatter-360

Replica [32]

PSNR↑ 32.521 33.282
SSIM↑ 0.951 0.957
LPIPS↓ 0.064 0.058

Abs Diff↓ 0.109 0.090
Abs Rel↓ 0.057 0.048
RMSE↓ 0.214 0.171
δ < 1.25↑ 94.257 96.645

HM3D [27]

PSNR↑ 30.851 31.493
SSIM↑ 0.915 0.925
LPIPS↓ 0.109 0.101

Abs Diff↓ 0.102 0.092
Abs Rel↓ 0.060 0.058
RMSE↓ 0.228 0.189
δ < 1.25↑ 94.802 96.031

1



Table 6. Additional ablation studies were conducted on the HM3D
and Replica datasets. For simplicity, we use the following abbre-
viations: ‘CVRU’ for spherical cost volume refinement U-Net and
‘DRU’ for depth refinement U-Net.

Ablated Replica [32] HM3D [27]

module PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

× DRU 28.306 0.905 0.129 26.800 0.846 0.189
× CVRU 29.002 0.912 0.115 27.362 0.856 0.175

Full 29.121 0.914 0.111 27.487 0.860 0.171

testing.

7.2. Experiment Details
In the comparisons of the main paper, for HiSplat, MVS-
plat, and DepthSplat, we utilize their model pre-trained
models on RE10K [54] for evaluation. We set near = 0.5
and far = 10 for these models as these parameters are rel-
atively close to their training setting. We match features
under the resolution of 1

4H × 1
4W , where H and W are the

height and width of input images. We apply near = 0.1
for HiSplat, MVSplat, and DepthSplat, but the results get
worse as near = 0.1 is much different from their training
setting on RE10K [54].

For MVSplat† and Splatter-360† trained on HM3D, we
set near = 0.1 and far = 10 to match our indoor dataset
for the consideration of fairness. We perform cross view
matching under the resolution of 1

8H × 1
8W due to GPU

memory limits.

7.3. Network Details
We adopt the encoder of UniMatch [44] as our backbone.
The first convolution layer downsamples images with a
stride of 2. Next, we utilize six residual layers to extract
features. The first two residual layers contain utilize the
stride of 1. Subsequently, we downsample features in half
after every two residual layers with a stride of 2. We then
get 1

8H × 1
8W feature maps. The downsampled feature

maps are fed into a cross-view transformer composed of six
stacked transformer blocks. Each transformer block con-
tains a self-attention and a cross-view attention layer. Sim-
ilar to MVSplat [5], we utilize the local window attention
of SwinTransformer [25]. We apply the network architec-
ture for our ERP multi-view transformer and CP multi-view
transformer.

For the cost volume refinement U-UNet, we adopt the
U-Net from Stable Diffusion 1.5 [28] as our implementa-
tion with an unchanged feature channel of 128 throughout
the network. We apply two times 2× down-sampling and
one self-attention layer at the 4× down-sampled level. We
flatten the feature map before feeding them to the attention

module, to interact with the features among different views
utilizing the multi-view attention similar to [31]. For the
depth refinement U-Net which we omitted in the main text
for simplicity, we apply 4 times 2× down-sampling and add
the multi-view attention at 16× down-sampled level.

We set D = 128 in the depth sampling consistently with
MVSplat [5]

8. Preliminary of 3DGS
The 3D Gaussian ellipsoid is formally defined as:

G(x | µ,Σ) = e−
1
2 (x−µ)TΣ−1(x−µ) (9)

where µ ∈ R3 represents the spatial mean, and Σ ∈ R3×3

denotes the covariance matrix. To ensure numerical stabil-
ity during optimization, the covariance matrix Σ is decom-
posed into a scaling matrix S and a rotation matrix R as
follows:

Σ = RSS⊤R⊤ (10)

During the rendering process, the 3D Gaussians are pro-
jected onto a 2D image plane. Using the intrinsic matrix
K and extrinsic matrix T , the 2D mean µ′ and covariance
matrix Σ′ are computed as:

µ′ = K[µ, 1]⊤, Σ′ = JTΣT⊤J⊤ (11)

Here, J represents the Jacobian matrix of the affine approx-
imation of the projective transformation. Each Gaussian is
associated with an opacity value o and a view-dependent
color c, which is determined by a set of spherical harmon-
ics coefficients. The pixel color C is computed via alpha-
blending over the 2D Gaussians, sorted from front to back:

C =
∑
i∈N

TiGi

(
u | µ′,Σ′)σici (12)

where the transmittance Ti is defined as:

Ti =

i−1∏
j=1

(
1−Gi

(
u | µ′,Σ′)σi

)
(13)
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